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Abstract - -  This paper proposes a simple change of dependent variables that guarantees positivity of turbulence variables in 
numerical simulation codes. The approach consists in solving for the natural logarithm of the turbulence variables which are known 
to be strictly positive. The approach is valid for any numerical scheme be it a finite difference, a finite volume, or a finite element 
method. The paper presents the turbulence equations in logarithmic variables for two popular turbulence models: the standard 
k -~  model and the k-c~ model of Wilcox. The advantages of the proposed formulation and the associated numerical difficulties 
are discussed within the framework of an adaptive finite element method. Error estimation and mesh adaptation procedures are 
described. The approach is applied to flows for which analytical solution or experimental measurements are available: a shear layer 
and the flow over a backward facing step. The proposed approach results in a robust adaptive algorithm. Predictions compare well 
with measurements. ~) Elsevier, Paris. 
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Resum~ - -  Preservation de la positivit~ et solution adaptative des modeles de turbulence ~ deux ~quations. Nous proposons 
dans cet article un changement de variable garantissant la positivite des variables de turbulence dans les codes de simulation 
num~rique. L'approche utilise le Iogarithme naturel des variables de turbulence comme variable de calcul. Cette approche est 
valide, quel que soit le schema num~rique utilis~, qu'il s'agisse de differences, de volumes ou d'~lements finis. L'article pr~sente 
les ~quations diff~rentielles en variables Iogarithmiques pour deux modeles de turbulence courants : le module k-~ standard et le 
module k - ~  de Wilcox. Nous discutons des avantages de la nouvelle formulation, ainsi que des difficultes qui y sont associees, 
le tout dans un cadre d'adaptation de maillage. Nous d~crivons I'estimation d'erreur et la m~thode d'~lements finis adaptative. 
Nous appliquons la m~thode ~ deux cas pour lesquels, soit il existe une solution analytique, soit des mesures expc~rimentales sont 
disponibles. II s'agit d'une couche cisaill~e et de I'~coulement sur une marche descendante. L'approche propos~e s'av~re robuste. 
Les predictions se comparent avantageusement aux r~sultats exp~rimentaux. (~) Elsevier, Paris. 
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V. divergence 

Subscripts 
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1. INTRODUCTION 

Adaptive methods are a powerful tool for solving 
complex computational fluid dynamics problems. This 
is especially true for two-equation models of turbulence. 
The coupled system of differential equations is very 
stiff and the solutions present sharp internal layers and 
fronts whose location is difficult to assess a priori. Yet, 
achieving adequate numerical resolution of such features 
is critical to the accuracy of the numerical predictions. 
Another major hurdle is ensuring that  turbulence 
variables remain positive (k, ~, w) throughout the 
domain and during the course of iterations. Failure 
to ensure this condition can result in immediate and 
irrecoverable breakdown of iterations. 

Various approaches have been devised to deal with 
this problem, ranging from the implementation of 
clipping operators or limiters [1 3], the design of 
special upwind finite volume schemes [4, 5], the use of 
diseretization schemes that  promote positivity [5, 6] or 
even guarantee it [7], to the design of turbulence models 
less prone to this kind of breakdown [8, 9]. The last 
approach presents the drawback of possibly imposing 
limitations on the turbulence modeling effort with 
the result that  some potentially useful mathematical 
model might be discarded because the numerical scheme 
cannot handle it properly. Upwind schemes have shown 
good potential in finite volume algorithms. However, 
upwind schemes cannot guarantee positivity under 
all circumstances. Positivity promoting algorithms are 
usually designed on a case by case basis since their 
structure depends in part on the turbulence model that  
has been retained. Use of solution clipping and limiters 
is very wide spread but it does have two drawbacks. 
First, it slows down the convergence of the iterative 
solver because clipped values of the solution destroy the 
residuals of the solution. Secondly, clipping introduces 
noises and oscillations in the solution fields. Negative 
values that  are locally reset to some small positive values 
can result in locally very large solution gradients and 
curvature, even if the values of k and e or w are small. 
An adaptive algorithm will tend to cluster grid points 
in these regions with the net result that  the mesh is 
being adapted to the inability of the solver to produce 
a smooth and positive solution rather than refining the 
grid in regions of large solution curvature. 

Thus, there is a need to improve the quality of the 
flow solver in order to fully benefit from the potential 
offered by adaptive methods. This paper presents a 
change of dependent variables for turbulence quantities 
that  results in improved solution quality (smoothness) 
so that  quantitative improvements by adaptive remesh- 
ing can be fully realized. The computational variables 
are the natural logarithm of k, e, and w. This choice of- 
fers several advantages. First, the eddy viscosity and the 
turbulence variables are always positive since they are 
obtained by taking the exponential of the appropriate 
computational variables. Second, it leads to improved 
accuracy in regions of rapid variations of the solution 
because the logarithm varies more slowly than its argu- 
ment. This last property also makes it possible to obtain 
solutions on coarser meshes because the logarithmic 
variables act as modified interpolation functions better 
suited to such situations. Finally, solution accuracy is 
also improved in regions of very low turbulence levels. 
The cost incurred for these benefits is a mild increase 
of the nonlinearity of the system of partial differential 
equations to be solved. 

The paper is organized as follows. Section 1 presents 
the Reynolds-averaged Navier-Stokes equations and the 
turbulence equations for the standard k e model [10] 
and the k a~ model of Wilcox [11]. Section 2 discusses 
the change of variables leading to the logarithmic 
variable form of the turbulence equations, and also 
some of the advantages for using such variables. Section 
3 presents the finite element formulation for solving 
the transformed equations. Section 4 presents the error 
estimation and adaptive strategies used in conjunction 
with the new equations and finite element methods. 
Here again advantages of the new formulation in regards 
to adaptivity are discussed: solution smoothness, eddy 
viscosity representation, robustness in region of low 
turbulence. Section 5 compares the various approaches 
and methods on problems for which a closed form 
solution or experimental data are available. The paper 
ends with conclusions. 

2. MODELING OF THE PROBLEM 

2.1. Reyno lds -averaged  Navier -Stokes 
e q u a t i o n s  

The flow regime of interest is modeled by the 
Reynolds-averaged Navier-Stokes equations: 

p [I .V/.l : - - V p  ~- V ' [ ( #  ~- # T ) ( V U  ~- V/-IT)] -~- p f  

V ' u = O  

where p is the density, ~ is the fluid viscosity and f is 
a body force. The turbulent viscosity #T is computed 
using the k ~ model of turbulence: 

k 2 
#T = p C~ - -  £ 
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or using the k-co model  of turbulence: 

k 
p T = p  - 

CO 

The system is closed by including the t ranspor t  
equations for the turbulence quantities.  

2.2. The standard k-e model 

For this model  the turbulence quanti t ies are the 
turbulence kinetic energy, k, and its dissipation rate, e, 
which are governed by the following t ranspor t  equations: 

[( p u . V k = V .  P+-g-[k Vk + # T P ( U ) - - p e  

p u . V e  = V. Vz + C ~ I ~ # T P ( u ) - C ~ 2 p ~  

where the product ion of turbulence is defined as: 

P(u) = V u  : (Vu  + V u  T) 

The constants  ak, a~, 6~1, C~2, C ,  take on the 
s tandard  values proposed by Launder  and Spalding [10]. 

To increase the robustness of the finite element 
scheme, the equations for k and e are rewri t ten by 
using the eddy viscosity definition [2, 12]. Thus, e may 
be rewri t ten as: 

k 2 
e = p C  u - -  

#T 

to achieve the following block-tr iangular  form of the 
turbulence equations: 

] p u . V k = V .  # ÷ ~  Vk +laTP(U)-p2C,-- ' -~ 

p u . V e = V .  #+--~  Ve +pC~lC,  k P ( u ) - C ~ 2 p  T 

The above equations can now be solved in the 
following par t ly  segregated manner:  

1) given initial conditions u0, k0 and e0 
2) compute  #T from k and z 

3) for PT given 

3.1) solve momentum and continuity 

3.2) solve the k-equation 

3.3) solve the e-equation 

3.4) upda te  PT and goto 3. 

In this algori thm step 3.1 consists in solving 
the Navier-Stokes equations with variable viscosity, a 
problem for which the proposed adapt ive  s t ra tegy has 
a l ready proven successful [13, 14]. Steps 3.1 to 3.3 
are solved in a Gauss-Seidel fashion, each step using 
the most recently available values for all variables. 
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Note that ,  in this form of the algorithm, the only 
nonlinearities are quadrat ic  ones due to the terms 
u.Vu,  k 2 and E 2 which are easily t rea ted  with Newton's  
method.  Finally, sub-i terat ions of steps 3.2-3.4 are used 
to accelerate the overall convergence of the i terative 
process. 

2.3. The k-co model of Wilcox 

For this model the dependent  variables are the 
turbulence kinetic energy, k, and its specific dissipation 
rate co [11]: 

p U'Vk = V" [(# ~- O*#T) Vk] -~ ~T P ( U )  - /3* p k c o  

cO 
p u.Vco = V. [(# + apT)Vco] + a ~ pTP(U)  _/3pco2 

The constants take on the values proposed by 
Wilcox [11]: 

, 1 1 5 3 9 
cr = ~ ,  c r = ~ ,  c ~ = ~ ,  /3=  , /3* 100 

The k co model equations are solved in the same 
par t ly  segregated manner  described in the previous 
section. The observations made previously for the k e 
model  also apply  to the k co model. 

2.4. Wall Boundary Condit ions 

On the boundary,  a combinat ion of Neumann and 
Dirichlet conditions are imposed using wall functions 
which describe the asymptot ic  behavior of the different 
variables near a solid wall [10]. For the turbulence 
kinetic energy we set the normal derivative at the wall 
to zero [15], so the TKE values on boundary  points kw 
are computed as par t  of the solution. Then we impose 
the wall shear stress through: 

pu cy4 k w/2 
Tw --  

U + 
where 

y+ , y+ < y+ 

U+ = 1 ln(Ey+) , y + > y +  

~61/4 ~1/2 y+ _ p ** ~w y 
# 

Here, U is the norm of the velocity, y is the 
distance between the computat ional  boundary  and 
the wall, ~ is the Von Karman  constant ,  and E is 
a roughness parameter  (E = 9.0 for smooth walls). 
Finally, the dissipation rate of the TKE,  e, and the 
specific dissipation rate,  co, on the boundary  points are 
given by 

6 3 / 4  k 3 / 2  ~1/2 
ew --  ~ Y  , ~ w  ~ 1 / 4  

~ t~ y 
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2.5. L imiters  for  t u r b u l e n c e  var iab les  

We now briefly discuss a limiting procedure that 
we have used with some linfited success for solving 
the k ~ turbulence equations. The turbulence equations 
contain divisions by k, ~ and #T. Hence, negative or 
small values of the denominator can lead to improper 
sign or overly large values for #T or for some source 
terms. A negative value for the eddy viscosity always 
has catastrophic effects on the solution and the solver 
because it makes the equations hyperbolic. Here, both 
k and e are limited from below to prevent them from 
taking overly small values [1, 2]. If k is too small, it 

k m a x  is replaced by k - where krnax is the maximum 
d~ 

value found in the domain and d~ is a user supplied 
constant. If e is too small and results in overly large 

k ~ 
values of #T, it is replaced by e = p C ,  d ,  tz~ where 

d,  is a user supplied constant establishing the lower 
bound of #T as d,  #t. Here tt~ is the fluid viscosity. 
When quadratic interpolation functions are used we 
might have positive nodal values for k and e for which 
the solution become negative inside the element. Hence, 
turbulence variables must also be limited from below at 
integration points [1, 2]. 

3. POSIT IV ITY PRESERVING APPROACHES 

While the above described technique provides a 
useful tool for solving turbulent flows, it presents a 
number of drawbacks. First, the iteration process is 
quite sensitive to the mesh. Most often, fairly fine 
meshes must be used to ensure that  enough resolution 
is provided to obtain smooth solutions [1, 2]. This 
can be quite expensive especially in three dimensions. 
Second, the clipping process used to enforce positivity 
results in local oscillations in the turbulence fields. This 
is very detrimental to the adaptive process since the 
error estimation technique, described later in the paper, 
detects these ripples and mistakenly identifies them as 
regions requiring mesh refinement. The net result is that  
adaptation is most often wasted on wiggles generated by 
the solver rather than being applied to improve accuracy 
in regions of large solution curvature. Regions that  do 
require mesh refinement may be overlooked with the 
consequence that  it is sometimes impossible to obtain 
a solution on the adapted mesh because the flow solver 
diverges. In other words, the mesh adaptation is being 
driven by deficiencies in the flow solver rather than by 
the flow physics. 

The usual fix consists in designing an initial mesh 
that  is sufficiently fine that  ripples will be nearly 
absent, thus defeating the original purpose of the mesh 
adaptation process. Such symptoms are most clearly 
seen in free shear flows when both turbulence variable 
decrease asymptotically towards zero but at such rates 
that  the eddy viscosity asymptotes to some small but 

constant value which often is several orders of magnitude 
larger than the turbulence variables themselves [2]. This 
phenomenon has also been observed, for the ease of 
internal flow over a backward facing step, in the shear 
layer emanating from the step corner [1]. In this layer 
all turbulence variables, including the eddy viscosity, 
present very sharp fronts across which the variables 
decrease by several orders of magnitude to approach 
very small values. Wiggles on the side of small values 
can lead to negative values of k, c, or the eddy viscosity 
inside an element. Clipping is triggered in these region 
with the effect of introducing additional kinks in the 
solution. Clipping can also result in mesh refinement 
next to fronts rather than across them. 

A simple approach to preserve positivity of the de- 
pendent variables consists in solving for their loga- 
rithms [16]. This can be viewed as using the following 
change of dependent variables: 

K2 = I n k ,  g = lne ,  g? = lnw 

Solving for the logarithms, (say for example K; and g), 
guarantees that  the turbulence quantities of interest 
(namely k and e) will remain positive throughout the 
computations. Hence the eddy viscosity ~T will always 
remain positive. We refer to this approach as solving 
for logarithmic variables. The use of the logarithm 
of a dependent variable has already been done in order 
to ensure positivity. Bristeau et al. [17] and Fortin 
et al. [18] used the logarithm of the density as a 
dependent variable, instead of the density itself, for 
solving compressible flows. This guarantees that  the 
density will always be positive. Applied to the transport  
equations of turbulence variables the technique presents 
another advantage. Any given field of a turbulence 
quantity presents very large variation of amplitude 
across very steep fronts which are difficult to resolve 
accurately. The fields of the logarithmic variables /C 
and g present smoother variations than those of k 
and e because the logarithm varies more slowly than 
its arguments. Hence, more accurate solutions can be 
expected when logarithmic variables are used. Examples 
shown latter in the paper confirm this. 

The equation for K; is obtained by first dividing the 
k-equation by k, and by noting that  the gradient of k 
divided by k is equal to the gradient of/C, [ V k / k  = VK~]. 
The g and D equations are obtained by a similar 
transformation. The turbulence model equations for 
logarithmic variables are then as follows: 

the k-e  model of turbulence 

e K 

+ I~T e-~CP(u) -- p~ C .  - -  
#T 

+ p C ~ C ~ e t C - ~ p ( u ) _ C s 2 p j  tc 
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with the following definition for the eddy viscosity 

#T = P C~ e 2~c-~ 

the k-a~ model  of turbulence: 

p u.V~c = ~ E ( ~  + ~* ~T)~7~c] + (~ + ~* ~ )  ( v ~ )  2 

+ #T e -to P(u)  -/3* p2 e ~2 
~tT 

p u.VX? = v.E(~ + ~ . ~ ) v x ? ]  + ( .  + ~ . ~ ) ( v x ? ) :  
+ a p e - n P ( u )  - ~3pc ~ 

with the following definition for the eddy viscosity: 

~T  = p c  

Note tha t  the use of logari thmic variables has 
removed the t roublesome division by e or ,'-2 in the 
eddy viscosity and replaced it by a subtract ion of 
argument  to the exponential  function. Also, a number 
of other  worrisome divisions have been removed from 
the differential equations for the turbulence variables. 
The price to pay for this advantage is the appearance 
of exponentials  in the right hand side of the turbulence 
equations. However, since k and ~ take on small values, 
the exponential  is very flat so tha t  the nonlinearit ies are 
usually very mild. In fact, our experience indicates tha t  
the use of logari thmic variables significantly enhances 
convergence of the solver. 

4. FINITE ELEMENT FORMULATION 

The finite element equations are obtained by multi- 
plying the differential equations by suitable test  func- 
tions and applying the divergence theorem to diffusion 
terms. This leads to the following Galerkin variat ional  
equations: 

momentum and continuity 

(p U.VU,V) ÷ a(u,v) -- (p,V.v) = (pf, v)+ < t*,v > 

(q,V.u) = 0 

with 

(h'9) = I v  h g d V  

a(u,v) = / v ( p  + #T) [Vu + V u  T] : V v d V  

< t * , v > = f 0  [ ( # + # T ) ( V U + V u T ) ' n - - p n ] ' v d s  
K \ F t  

+ ~ Tw'V ds  
K N F t  

5 6 4  

where OK \ Ft denotes either a freestream or outflow 
boundary  and OK n Ft represents the port ion of the 
boundary  where the law of the wall will be applied. The 
imposed wall shear stress boundary  condition is t rea ted  
implicit ly and linearized with Newton's  method.  

The finite element formulation for turbulence models 
equations in logari thmic variables are as follows: 

- t h e k  e m o d e l  

- - w  d V = O  - #T e-tOP(u) w + p2 Ct, PT 

-- p 0~1 C .  e ~ - s  P(u)  w + C.2 p eg-~Cwl 
I 

dV 0 
J 

the k-a~ model  

fv [p u w 
e ~ 

- #T e -~c P ( u )  w + p2/3 .  ~TT W] d V  = 0 

- a p e - X ?  P(u)  w + ~peX?w]dV = 0  

The momentum and continuity equations are dis- 
cretized using the seven node triangle which uses en- 
riched quadrat ic  shape functions for velocity and a 
pieeewise linear and discontinuous approximat ion for 
the pressure. ~i51rbulence equations are discretized using 
quadrat ic  shape functions. 

The momentum and turbulence t ranspor t  equations 
are dominated  by convection and it is well known that  
a s tandard  Galerkin discretization leads to oscillations 
in the solutions. Hence, some form of upwinding is 
required to suppress these non-physical oscillations. 
Here we use a St reamline-Upwind/Pet rov-Galerkin  
(SUPG) method as described by Hughes et al. [19, 
20]. In this approach the test functions for momentum 
and turbulence equations are modified as follows: 

w~ = Ni + TU.VNz 

and therefore are different from the interpolat ion 
functions N~. Here T is a s tabil izat ion parameter  defined 
as [20]: 

5h 
7---  

21Vl 
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where h is the element size, IVI is the norm of the 
velocity and 6 is a pa ramete r  depending on the local 
P6clet number: 

1 
5 = coth(Pe) Pe 

P e -  p h l V I  
2~ 

with A being the diffusion coefficient of the t ranspor t  
equation under consideration. The addit ional  SUPG 
contr ibut ions are discontinuous across element faces, 
consequently terms containing them will be integrated 
only on the element interiors. 

5. ADAPTIVE METHODOLOGY 

5.1. Generalities 

Most adapt ive  methods assess the quali ty of an initial 
solution obtained on a coarse mesh by using some form 
of error es t imat ion and modify the s tructure of the 
numerical approximat ion in a systematic  fashion to 
improve the overall quali ty of the solution. In this 
work error est imates are obtained for all dependent  
variables (velocity, pressure and turbulence variables) by 
a local least-squares project ion method  as proposed by 
Zienkiewicz et al. [21-23]. Mesh adapta t ion  is performed 
by global remeshing because it provides great  control 
over the mesh grading to accurately resolve the flow 
features. In this approach the problem is first solved on 
a coarse mesh capable of roughly resolving the physics 
of the flow. The solution is analyzed to determine where 
more grid points are required and an improved mesh 
is generated. The problem is solved again on the new 
mesh using the previous solution as an initial guess. 
This process is repeated until  a sufficiently accurate 
solution is obtained.  

5.2. Error Estimation and Adaptive 
Remeshing 

The adapt ive  remeshing procedure described by 
Ilinca et al. [16, 24] is used to cluster grid points in 
regions of rapid variations of all dependent  variables: 
velocity, pressure, logari thmic turbulence variables and 
the eddy viscosity. Error  es t imates  are obtained by 
a local least squares reconstruct ion of the solution 
derivatives [21, 22]. In the case of the velocity field the 
s train rate tensor is used for error est imation.  An error 
es t imate  of the pressure solution is obtained by local 
project ion of the pressure field itself. Error est imates are 
obtained for turbulence variables by project ing the finite 
element derivatives of K:, g and /o r  ~? into a continuous 

field. Finally, an error est imate for the eddy viscosity is 
also constructed since slowly varying fields of K; and g 
can result in rapid  variat ion of the eddy viscosity. This is 
very impor tant  to the success of adap ta t ion  in turbulent  
flows since the eddy viscosity is the sole mechanism for 
transfer of momentum and turbulence kinetic energy 
by turbulent  fluctuations. See references [1, 2, 12] for 
examples and some discussion of these issues. This 
approach was successfully applied by the authors  to 
the k e model  [12], the k - w  model of turbulence [24, 
25], to turbulent  heat  transfer [26] and to a pressure 
based finite element solution algori thm for compressible 
subsonic viscous flows [27]. 

Once the error es t imates  are obtained for all 
variables, there remains to design a be t te r  mesh. The 
adapt ive remeshing s t ra tegy is modeled after tha t  
proposed by Peraire et al. [28]. In our approach all 
variables are analyzed and contr ibute to the mesh 
adapta t ion  process. The mesh characterist ics (element 
size) are derived for each variable on a given element. 
The minimum element size predicted by each of 
the dependent  variable is selected on each element. 
Details of the steps of this algori thm are presented in 
reference [16]. 

5.3. Logarithmic variables and solution 
errors 

The effect of the change of dependent  variables on the 
solution accuracy can be best  appreciated by looking at  
the relationship between the error in a given turbulence 
variable and the error in its natura l  logarithm. Let ek 
and e~c denote the error in k and in its na tura l  logarithm, 
K:, respectively. We have the following relationships 
between the exact solution and its logarithm: 

~ex = e K:ex 

We also have the following relationship between the 
exact values and their  finite element approximat ion:  

kex = kh -~ ek , K~ex = ](~h q'- eK; 

We can then write 

]~h q- Ck : eJChq-eK: ~ eK~h eeK: : eK:h (1 -1- eK2 -~ O(e~c ) )  

Which, upon neglecting higher order terms, leads to 

~h -~- ek ~ kh ~- kh eK: 

That  is 

ek  ,-~ k h  elc 

In other  words, the error in the logari thm of k is 
proport ional  to the relative error in k. This observation 
plays a significant role for turbulent  flows. Recall tha t  
the mesh adap ta t ion  s t ra tegy uses the principle of equi- 
dis t r ibut ion of the error. Recall also tha t  k is often very 
small in the free stream. Wi th  the use of logari thmic 
variables the solver and the error es t imat ion process 
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will easily see the significance of an error est imate of 
10 -6 in a region where k is of order 10 -6, and the 
mesh will be refined in tha t  region. In other words, 
logari thmic variables will detect  regions where the error 
is sizable when compared to the norm of the solution. 
This is not the case when using k as a dependent  
variable. This reasoning also holds for e and for ~, 
and is also applicable to the non-linear finite element 
equation solver. In the last case this results in more 
accurate  solution of the discrete nonlinear equations. 

When  using ]~ and e as dependent  variables, small 
errors in regions of low turbulence variables can have 
disastrous effects on the accuracy of the eddy viscosity. 
Indeed, since the eddy viscosity is given by 

~ T  = p C t ~  - -  
£ 

the error in the eddy viscosity can be wri t ten as 

e~T  : 2 ek ee 

~ T  k e 

which shows tha t  the relative errors in k and 
accumulate  in tha t  of the eddy viscosity. This means 
tha t  a 5 percent uncer ta inty  in k and e results in a 
15 percent error in eddy viscosity. Furthermore,  the 
error in eddy viscosity can be amplified by the division 
if k a n d / o r  e are small. This amplification can have 
disastrous effects especially in the free s t ream of flows 
over airfoils or in free shear layers. I t  is s traightforward 
to show tha t  when logari thmic variables are used the 
relat ionship between the eddy viscosity error and the 
error in the logari thmic variables is given by 

et~ T = ~ T  (2e~c + eg) 

This shows tha t  the error es t imat ion in the eddy 
viscosity will no longer be affected by the local level 
of the turbulence variables and is no longer subject  to 
the numerical difficulties associated with division by 
small numbers.  This explain in par t  the abil i ty of the 
proposed method on coarse meshes. 

6. A P P L I C A T I O N S  

6.1. A shear  layer wi th  a closed f o r m  
solut ion 

This problem served as a validation case in refer- 
ence [1] to test  the accuracy of the error es t imat ion 
technique. In this flow the eddy viscosity is a linear 
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flmction of x and is independent  of y. 

ul + u2 Ul - u2 erf((Ty)~_ 
u =  2 

u l - u 2  1 [ ( ~ ) 2 ]  
v - -  ~ (TV/~ exp -- 

p = O  

s = - -  c k + e x p  - 
2; 

# T  = ~ T  0 X 

The constants  are taken to be 

ul = 1.0 , u2 = 0.0 , (7 = 13.5 

343 (7 2 . 1 0  - 3  

k0 - -  75  0 0 0  u l  ( u ,  - u2 )  ~ ,  ck - k ~  ' 

343 C (72 
~o = 22 500 u u l ( u l - u 2 )  2~'-  

343 p u l L  _ 104 
#To -- 250000 p u l  , Re t  - #l 

The computa t ional  domain is the rectangle [100, 
300] x [-75, 75]. The problem was solved first in 
logarithmic variables and then with the s tandard  form 
of the k e model. All equations are solved using the 
SUPG formulation. 

The meshes generated by tile adapt ive procedure are 
shown in f igure  1. On the last mesh several diagonal 
bands of refinement can be clearly seen. They corre- 
spond to regions of rapid variation in velocity, ]C, g, 
and #T. The same meshes have been used to com- 
pute the solution using (k, e) and (/(;, g) as dependent  
variables. In this way, we can compare the accuracy 
of the eddy viscosity obtained using both approaches. 
Figure  2 presents the t ra jec tory  of the true error for 
the eddy viscosity. As can be seen, the use of logarith- 
mic variables leads to a far more accurate predict ion of 
the eddy viscosity than  the classical solution approach. 
This fact is i l lustrated on f igure  3 which shows the eddy 
viscosity field obtained on first mesh. The plot on the 
top i l lustrates results from the (k, E) solution, while 
the second one presents the solution obtained using 
logari thmic variables. The exact solution is presented 
on the bot tom.  All plots contain 20 contour lines from 
0.1372 to 0.4116. As can be seen, logarithmic variables 
lead to significant improvements in the quali ty of the 
eddy viscosity distr ibution.  This is mainly due to the 
fact tha t  a quadrat ic  interpolat ion of the logari thm of 
turbulence quanti t ies is more accurate than a quadrat ic  
interpolat ion of the turbulence quantit ies themselves 
in regions of rapid variations. While improvements in 
the accuracy of the solution are more pronounced on 
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Figure 1. Meshes for the analytical shear layer. 

coarser meshes, figure 2 shows that  the solutions using 
logarithmic variables are always more accurate on any 
mesh than those obtained from the (k, e) calculation. 

6.2. Flow over a backward facing step 

This problem was studied experimentally by West- 
phal et al. [29]. The geometry and boundary conditions 
are shown in figure 4. All geometrical values are dimen- 
sionless with the reference length being the step height 
H. The Reynolds number based on the inlet mean veloc- 
ity and the step height is Re = (U.H)/u = 42 000. The 
inlet turbulence intensity is set to 2 % (k/U 2 = 0.02). 
The distance to the wall is 0.02 resulting in a y+ value 
between 30 and 100 on all solid boundaries. The initial 
mesh, shown in figure 5, is very coarse having only two 
elements along the step height and four in the upstream 
channel. This is an indication of the robustness of the 
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i 
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Figure 2. Trajectory of the eddy viscosity error for 
analytical shear layer. 
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Solution from k and e 

lolution from logarithms (K~ and E) 
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Figure 3. Analytical shear layer: contour lines of the turbulent 
viscosity on the first mesh. 
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Figure 4. Computational domain for the backward facing step. 
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Figure 5. Initial mesh for the backward facing step. 

flow solver arising from the use of logarithmic variables. 
Tile solution obtained on this mesh is not very accurate 
but  is sufficiently smooth to properly drive adaptivity 
so that  grid points are automatically concentrated on 
regions of rapid changes of the solution. There is no 
need for grid clustering on the initial mesh using a priori 
knowledge of the solution behavior. Moreover, because 
the solution is interpolated between two subsequent 
meshes, the procedure is also cost effective. 

The adaptive procedure was completed for the two 
turbulence models separately. Figures 6 and 7 show 
the final meshes and contours of tile turbulent  kinetic 
energy logarithm and of the eddy viscosity for the k-e  
and k-w models. As can be seen the final meshes are 
comparable. The final meshes contain 25 337 nodes and 
12 290 elements for the k -e  model, and 26 382 nodes 
and 12 803 elements for the k-aJ model. Grid points are 
clustered in the shear layer emanat ing from the corner 
of the step where all variables exhibit strong variations. 
Elements are also clustered in the boundary layers along 
solid walls because of the rapid changes in the turbulent  
viscosity. The final solution is very smooth in both cases. 

The length of the recirculation zone is compared 
with experimental data  in the table. The predictions 
using the k-e  model are closer to experimental data  on 
adapted meshes. The k-a~ model prediction is farther 
from the data. The cause for this behavior may be the 
absence of a cross derivative term in the a>equation. For 
both models the difference between the values obtained 
on the last two adapted meshes, (mesh 2 and 3), is very 
small indicating that  the solutions are grid independent.  

Figure 8 compares numerical predictions and exper- 
imental  data  for the x-component of velocity at four 
control stations. Following Westphal et al. [29] on the 
x-axis we plot the u velocity normalized by its maxi- 
mum value at that  section, while on the y-axis we have 
the dimensionless y coordinate. Results from the last 
two adapted meshes are plotted. As can be seen there 
are practically no differences between the solutions on 
those two meshes. This indicates that  the adaptive 

TABLE 
Length of the recirculation zone. 

Model/experiment Length error (%) 

Experiment[291 7.33 4- 1.0 13.6 

k-s,  mesh 0 3.90 46.8 

k 6, mesh - 1 6.07 17.2 

k-g, mesh 2 6.43 12.3 

k 6, mesh - 3 6.47 11.7 

k-w, mesh - 0 5.97 18.5 

k w, mesh 1 6.51 11.2 

k w, mesh 2 5.81 20.7 

k w, mesh - 3 5.88 19.8 

process has resulted in grid independent solutions. In 
the recirculation zone, the k -e  model provide a bet- 
ter velocity prediction than the k w model. This is in 
agreement with the previous observation concerning the 
underestimation of the recirculation length of the k ~o 
model. 

Figure 9 presents profiles of the TKE. The values 
are normalized by the maximum value of the TKE in 
each section as provided in the experimental data. The 
station located at x/H = 4 is in the recirculation zone 
while the other three are positioned downstream of the 
reattachment point. Both models behave in the same 
way and result in predictions close to experiment. 

7.  C O N C L U S I O N  

This paper has presented a change of depen- 
dent variables which guarantees positivity of turbu-  
lence variables in two-equation models of turbulence. 

5 6 8  
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Figure 6, Backward facing step: final mesh and solution for the k-~ model. 
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Figure 7. Backward facing step: final mesh and solution for the k -w  model. 
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Figure 8. Velocity profiles for the backward facing step. 
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The use of logari thmic variables for turbulence quanti-  
ties el iminates the need for clipping or l imiting turbu-  
lence variables from below in the course of numerical 
i teration. The use of logari thmic variables presents the 
following advantages over s tandard  variables: 

- turbulence quanti t ies are always positive; 

- the eddy viscosity never becomes negative; 

- solutions can be obtained on coarser initial meshes; 

logari thmic variables vary more slowly than  k, and e; 
hence, resolution of fronts in turbulence variables and 
eddy viscosity is improved; 

adap ta t ion  using error est imates in logari thmic 
variables lead to significant improvement in accuracy 
of the solution in regions where turbulence quanti t ies 
are extremely small. 

Numerical  experiments  have shown tha t  the use 
of logari thmic variables leads to improved predict ion 
of the eddy viscosity field on problems having an 
analyt ical  solution, and for pract ical  turbulent  flows. 
This is due to the combined effect of improved resolution 
resulting from the use of logari thmic variables and to 
the el iminat ion of clipping in the solution algorithm. 
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